Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biogeochemistry ; 165(1): 91-111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637456

RESUMO

Organo-mineral and organo-metal associations play an important role in the retention and accumulation of soil organic carbon (SOC). Recent studies have demonstrated a positive correlation between calcium (Ca) and SOC content in a range of soil types. However, most of these studies have focused on soils that contain calcium carbonate (pH > 6). To assess the importance of Ca-SOC associations in lower pH soils, we investigated their physical and chemical interaction in the grassland soils of Point Reyes National Seashore (CA, USA) at a range of spatial scales. Multivariate analyses of our bulk soil characterisation dataset showed a strong correlation between exchangeable Ca (CaExch; 5-8.3 c.molc kg-1) and SOC (0.6-4%) content. Additionally, linear combination fitting (LCF) of bulk Ca K-edge X-ray absorption near-edge structure (XANES) spectra revealed that Ca was predominantly associated with organic carbon across all samples. Scanning transmission X-ray microscopy near-edge X-ray absorption fine structure spectroscopy (STXM C/Ca NEXAFS) showed that Ca had a strong spatial correlation with C at the microscale. The STXM C NEXAFS K-edge spectra indicated that SOC had a higher abundance of aromatic/olefinic and phenolic C functional groups when associated with Ca, relative to C associated with Fe. In regions of high Ca-C association, the STXM C NEXAFS spectra were similar to the spectrum from lignin, with moderate changes in peak intensities and positions that are consistent with oxidative C transformation. Through this association, Ca thus seems to be preferentially associated with plant-like organic matter that has undergone some oxidative transformation, at depth in acidic grassland soils of California. Our study highlights the importance of Ca-SOC complexation in acidic grassland soils and provides a conceptual model of its contribution to SOC preservation, a research area that has previously been unexplored. Supplementary Information: The online version contains supplementary material available at 10.1007/s10533-023-01059-2.

3.
J Anaesthesiol Clin Pharmacol ; 38(Suppl 1): S120-S124, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36060194

RESUMO

Background and Aims: Mechanical ventilation in prone position was associated with a reduction in mortality and increase in arterial oxygenation in acute respiratory distress syndrome (ARDS) patients. However, physiological effects of prone position in COVID ARDS patients are unknown. Material and Methods: In this prospective observational study, data of n = 47 consecutive real time RT- PCR confirmed SARS-CoV-2-infected patients with severe ARDS were included. Respiratory mechanics and oxygenation data of recruited patients were collected before and after prone position. Results: Median (Interquartile range, IQR) age of the recruited patients was 60 (50-67) years and median (IQR) PaO2/FiO2 ratio of 61.2 (54-80) mm Hg with application of median (IQR) positive end expiratory pressure (PEEP) of 12 (10-14) cm H2O before initiation of prone position. Out of those patients, 36 (77%) were prone responders at 16 hours after prone session, evident by increase of PaO2 by at least 20 mm Hg or by 20% as compared to baseline, and 73% patients were sustained responders (after returning to supine position). Plateau airway pressure (p < 0.0001), peak airway pressure (p < 0.0001), and driving pressure (p < 0.0001) were significantly reduced in prone position, and static compliance (p = 0.001), PaO2/FiO2 ratio (p < 0.0001), PaO2 (p = 0.0002), and SpO2 (p = 0.0004) were increased at 4 hours and 16 hours since prone position and also after returning to supine position. Conclusion: In SARS-CoV-2-infected patients, mechanical ventilation in prone position is associated with improvement in lung compliance and oxygenation in almost three-fourth of the patients and persisted in supine position in more than 70% of the patients.

4.
Front Microbiol ; 13: 864895, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602028

RESUMO

Determining the mechanisms, traits, and pathways that regulate microbial transformation of natural organic matter (NOM) is critical to informing our understanding of the microbial impacts on the global carbon cycle. The capillary fringe of subsurface soils is a highly dynamic environment that remains poorly understood. Characterization of organo-mineral chemistry combined with a nuanced understanding of microbial community composition and function is necessary to understand microbial impacts on NOM speciation in the capillary fringe. We present a critical review of the popular analytical and omics techniques used for characterizing complex carbon transformation by microbial communities and focus on how complementary information obtained from the different techniques enable us to connect chemical signatures with microbial genes and pathways. This holistic approach offers a way forward for the comprehensive characterization of the formation, transformation, and mineralization of terrestrial NOM as influenced by microbial communities.

5.
Sci Rep ; 12(1): 712, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027569

RESUMO

The traditionally held assumption that photo-dependent processes are the predominant source of H2O2 in natural waters has been recently questioned by an increrasing body of evidence showing the ubiquitiousness of H2O2 in dark water bodies and in groundwater. In this study, we conducted field measurement of H2O2 in an intra-meander hyporheic zone and in surface water at East River, CO. On-site detection using a sensitive chemiluminescence method suggests H2O2 concentrations in groundwater ranging from 6 nM (at the most reduced region) to ~ 80 nM (in a locally oxygen-rich area) along the intra-meander transect with a maxima of 186 nM detected in the surface water in an early afternoon, lagging the maximum solar irradiance by ∼ 1.5 h. Our results suggest that the dark profile of H2O2 in the hyporheic zone is closely correlated to local redox gradients, indicating that interactions between various redox sensitive elements could play an essential role. Due to its transient nature, the widespread presence of H2O2 in the hyporheic zone indicates the existence of a sustained balance between H2O2 production and consumption, which potentially involves a relatively rapid succession of various biogeochemically important processes (such as organic matter turnover, metal cycling and contaminant mobilization). More importantly, this study confirmed the occurrence of reactive oxygen species at a subsurface redox transition zone and further support our understanding of redox boundaries on reactive oxygen species generation and as key locations of biogeochemical activity.

6.
ISME J ; 16(1): 10-25, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34211103

RESUMO

Switchgrass is a deep-rooted perennial native to the US prairies and an attractive feedstock for bioenergy production; when cultivated on marginal soils it can provide a potential mechanism to sequester and accumulate soil carbon (C). However, the impacts of switchgrass establishment on soil biotic/abiotic properties are poorly understood. Additionally, few studies have reported the effects of switchgrass cultivation on marginal lands that have low soil nutrient quality (N/P) or in areas that have experienced high rates of soil erosion. Here, we report a comparative analyses of soil greenhouse gases (GHG), soil chemistry, and microbial communities in two contrasting soil types (with or without switchgrass) over 17 months (1428 soil samples). These soils are highly eroded, 'Dust Bowl' remnant field sites in southern Oklahoma, USA. Our results revealed that soil C significantly increased at the sandy-loam (SL) site, but not at the clay-loam (CL) site. Significantly higher CO2 flux was observed from the CL switchgrass site, along with reduced microbial diversity (both alpha and beta). Strikingly, methane (CH4) consumption was significantly reduced by an estimated 39 and 47% at the SL and CL switchgrass sites, respectively. Together, our results suggest that soil C stocks and GHG fluxes are distinctly different at highly degraded sites when switchgrass has been cultivated, implying that carbon balance considerations should be accounted for to fully evaluate the sustainability of deep-rooted perennial grass cultivation in marginal lands.


Assuntos
Panicum , Solo , Carbono , Dióxido de Carbono/análise , Metano , Óxido Nitroso/análise , Solo/química
7.
Indian J Crit Care Med ; 25(10): 1147-1154, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34916747

RESUMO

BACKGROUND: Administration of vitamin D to unselected heterogeneous critically ill patients did not demonstrate outcome benefit. The current study was undertaken to identify if early administration of vitamin D can reduce intensive care unit (ICU) length of stay and improve clinical outcomes in critically ill patients with sepsis. METHODS: This single-center randomized double-blind placebo-controlled trial was done in the ICU and emergency inpatient ward of a tertiary care teaching institute in New Delhi, India. A total of 126 adult patients aged 18 to 80 years of either sex diagnosed to have sepsis were included within 24 hours of admission to the hospital and randomized into vitamin D or placebo groups. The patients in the intervention group received vitamin D3 540,000 units dissolved in 45 mL of milk. The placebo group received 45 mL of milk. RESULTS: The median length of ICU stay (8 vs 9 days; p = 0.32), median length of hospital stay (12 vs 12 days; p = 0.33), median duration of vasopressors requirement (4 vs 3 days; p = 0.84), median duration of mechanical ventilation (5 vs 7 days; p = 0.23), requirement of tracheostomy (34 vs 39%; p = 0.71), and 90-day mortality [35 vs 46%; p = 0.29; HR 0.72 (0.42-1.24)] were similar in vitamin D and placebo arm.A subgroup analysis in patients with severe vitamin D deficiency (vitamin D <12 ng/mL) revealed a significantly decreased incidence of tracheostomy (28 vs 57%; p = 0.04), a trend toward decreased 90-day mortality [34 vs 66%; p = 0.08; HR 0.44 (0.19-1.01)], and duration of mechanical ventilation (6 vs 11 days; p = 0.05) in patients receiving vitamin D. CONCLUSION: Administration of large-dose vitamin D within 24 hours of admission does not reduce the length of ICU stay in critically ill sepsis patients. HOW TO CITE THIS ARTICLE: Bhattacharyya A, Subramaniam R, Baidya DK, Aggarwal P, Wig N. Effect of Early Administration of Vitamin D on Clinical Outcome in Critically Ill Sepsis Patients: A Randomized Placebo-controlled Trial. Indian J Crit Care Med 2021;25(10):1147-1154.

8.
Ann Card Anaesth ; 24(1): 12-16, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33938825

RESUMO

Background: Patients undergoing surgery often demonstrate coagulopathy. Usually, this derangement in coagulation is assessed by the laboratory based evaluation of blood samples. However, collection of samples, their transportation to the lab, and the analyses can result in several errors and as such these tests may not be representative of the complete coagulation process. In our study, we compared the lab coagulation parameters with the point of care TEG indices and attempted to compare the outcome prediction of our patients based on the TEG indices and the various practiced ICU scores. Methods: A prospective, observational study was conducted between May 2014 and May 2015. Fifty adult patients who had undergone noncardiac surgery and had developed new onset 2 or more than 2 system involvement in the postoperative period were enrolled in the study. They were sampled simultaneously for lab coagulation parameters (PT, APTT, INR, fibrinogen, and platelet count) and TEG on days 1, 3, and 5 post admission. Results: There were significant differences between TEG and lab coagulation parameters on day 1 of the study 1 (P = 0.004) but not on days 3 and 5. On days 1 and 3 of our study, the ICU scores (SOFA and APACHE II) were significantly higher in the group with deranged TEG parameters (P = 0.003, 0.02). The patient subpopulation with deranged TEG parameters had significantly higher mortality at median survival time (P = 0.014). Such a difference was not found in patients with higher ICU scores or deranged lab coagulation times. We constructed a ROC curve and arrived at a cutoff value of the reaction time to predict the median survival day mortality. Conclusions: The agreement between TEG and conventional lab parameters remains poor but the TEG parameters seem to be more deranged in sicker patients. As the relationship between the overall severity of illness and derangement in the hemostatic system has been well explored in medical literature, TEG may be a more appropriate modality in such patients.


Assuntos
Hemostáticos , Tromboelastografia , Adulto , Testes de Coagulação Sanguínea , Estado Terminal , Humanos , Laboratórios , Período Pós-Operatório , Estudos Prospectivos
9.
Environ Sci Technol ; 52(24): 14129-14139, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30451506

RESUMO

Oscillating redox conditions are a common feature of humid tropical forest soils, driven by an ample supply and dynamics of reductants, high moisture, microbial oxygen consumption, and finely textured clays that limit diffusion. However, the net result of variable soil redox regimes on iron (Fe) mineral dynamics and associated carbon (C) forms and fluxes is poorly understood in tropical soils. Using a 44-day redox incubation experiment with humid tropical forest soils from Puerto Rico, we examined patterns in Fe and C transformations under four redox regimes: static anoxic, "flux 4-day" (4d oxic, 4d anoxic), "flux 8-day" (8d oxic, 4d anoxic) and static oxic. Prolonged anoxia promoted reductive dissolution of Fe-oxides, and led to an increase in soluble Fe(II) and amorphous Fe oxide pools. Preferential dissolution of the less-crystalline Fe pool was evident immediately following a shift in bulk redox status (oxic to anoxic), and coincided with increased dissolved organic C, presumably due to acidification or direct release of organic matter (OM) from dissolving Fe(III) mineral phases. The average nominal oxidation state of water-soluble C was lowest under persistent anoxic conditions, suggesting that more reduced organic compounds were metabolically unavailable for microbial consumption under reducing conditions. Anoxic soil compounds had high H/C values (and were similar to lignin-like compounds) whereas oxic soil compounds had higher O/C values, akin to tannin- and cellulose-like components. Cumulative respiration derived from native soil organic C was highest in static oxic soils. These results show how Fe minerals and Fe-OM interactions in tropical soils are highly sensitive to variable redox effects. Shifting soil oxygen availability rapidly impacted exchanges between mineral-sorbed and aqueous C pools, increased the dissolved organic C pool under anoxic conditions implying that the periodicity of low-redox events may control the fate of C in wet tropical soils.


Assuntos
Ferro , Solo , Carbono , Florestas , Oxirredução , Porto Rico
11.
Nat Commun ; 8: 15538, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28569759

RESUMO

Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U(VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U(IV) generated through biologically mediated U(VI) reduction is the predominant U(IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (∼58-89%) of U is bound as U(IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U(VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotope signatures, consistent with largely biotic reduction of U(VI) to U(IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U(IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...